Program: FE (All Branches)

Curriculum Scheme: Revised 2016
Examination: First Year Semester I

Course Code: FEC 102
Time: 1 hour

Course Name: Applied physics I
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	What is the probability of an electron being thermally excited to the conduction band is Si at $27^{\circ} \mathrm{C}$. The band gap energy is 1.12 eV.
Option A:	3.5×10^{-5}
Option B:	6.3×10^{-6}
Option C:	1.5×10^{-6}
Option D:	5.6×10^{-6}
Q2.	Effective number of atoms for HCP is
Option A:	6
Option B:	4
Option C:	2
Option D:	1
Q3.	For a particle inside a box, the potential is maximum at $\mathrm{x}=$
Option A:	L
Option B:	2 L
Option C:	$\mathrm{L} / 2$
Option D:	3 L
Q4.	Ultrasonic waves are produced by converting
Option A:	Optical energy to sound energy
Option B:	Magnetic energy to sound energy
Option C:	Nuclear energy to sound energy
Option D:	Mechanical energy to sound energy
Q5.	In superconductivity, the electrical resistance of material becomes
Option A:	Zero
Option B:	Infinite
Option C:	Finite
Option D:	All of the above
Q6.	N-type Ge sample has donor concentration 10^{21} atoms $/ \mathrm{m}^{3}$. What Hall voltage would you expect if current of 1 mA and magnetic field 0.5 T is applied across 2 mm thick sample.

Option A:	2.50 mV
Option B:	1.56 mV
Option C:	3.56 mV
Option D:	9 mV
Q7.	A hall of volume $6000 \mathrm{~m}^{3}$ has a reverberation time 3 sec . if the absorbing surface of the hall has an area of $4000 \mathrm{~m}^{3}$ Calculate the average coefficient of absorption.
Option A:	0.08 OWU
Option B:	0.06 OWU
Option C:	0.09 OWU
Option D:	0.02 OWU
Q8.	Determine the de-Brogile wavelength of an electron accelerated by a potential difference of 150 V .
Option A:	$2.0056 \times 10^{-10} \mathrm{~m}$
Option B:	$2.5213 \times 10^{-10} \mathrm{~m}$
Option C:	$1.0031 \times 10^{-10} \mathrm{~m}$
Option D:	$1.9068 \times 10^{-10} \mathrm{~m}$
Q9.	The temperature at which conductivity of a material becomes infinite is called
Option A:	Critical temperature
Option B:	Absolute temperature
Option C:	Mean temperature
Option D:	Crystallization temperature
Q10.	Sabine's formula is given by
Option A:	$\mathrm{T}=0.161 \times \mathrm{V} / \mathrm{A}$
Option B:	$\mathrm{T}=0.161 \times \mathrm{V}^{2} / \mathrm{A}$
Option C:	$\mathrm{T}=0.161 \times \mathrm{V} / \mathrm{A}^{2}$
Option D:	$\mathrm{T}=0.161 \times(\mathrm{V} / \mathrm{A})^{2}$
Q11.	Calculate the glancing angle on the (100) plane of a rock salt crystal with lattice constant $2.125 \mathrm{~A}^{0}$ for $2^{\text {nd }}$ order maximum having wavelength of incident X -ray is $0.592 \mathrm{~A}^{0}$.
Option A:	$\Theta=10.12^{\circ}$
Option B:	O $=16.17^{\circ}$
Option C:	Ө $=9.50{ }^{\circ}$
Option D:	$\theta=20.18^{\circ}$
Q12.	The resistivity of Cu is 1.72×10^{-8} ohm-m. Calculate the mobility of electron in Cu. Given the number of electrons per unit volume is $10.41 \times 10^{28} / \mathrm{m}^{3}$
Option A:	$3.482 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{V}$-sec.
Option B:	$3.482 \times 10^{-2} \mathrm{~m}^{2} / \mathrm{V}$-sec.
Option C:	$3.482 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}$-sec.
Option D:	$3.482 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{V}$-sec.

Q13.	When is ultrasonic waves produced using piezo electric oscillator?
Option A:	At constant temperature
Option B:	At resonance
Option C:	At constant pressure
Option D:	At constant voltage
Q14.	Addition of pentavalent impurity to a semiconductor creates many
Option A:	Free electrons
Option B:	Holes
Option C:	Valence electrons
Option D:	Bound electrons
Q15.	A superconductor has a critical temperature 3.7 K at zero magnetic field . At OK the critical magnetic field is 0.0306 tesla. What is the critical magnetic field at temperature 2 K ?
Option A:	0.02565 Tesla
Option B:	0.01406 Tesla
Option C:	0.09651 Tesla
Option D:	0.03698 Tesla
Q16.	A plane is parallel to an axis. What is its Miller Index?
Option A:	Infinity
Option B:	Zero
Option C:	One
Option D:	Finite
Q17.	Find out the lowest energy of an electron in a one dimensional box width of $4 \mathrm{~A}^{0}$
Option A:	3.60 eV
Option B:	2.35 eV
Option C:	1.55 eV
Option D:	4.63 eV
Q18.	Find the echo time of ultrasonic pulse travelling with velocity $5.9 \times 10^{3} \mathrm{~m} / \mathrm{sec}$ in a mild steel whose correct thickness displayed by gauge meter is 1.8 mm
Option A:	5.6μ-sec
Option B:	6.1μ-sec
Option C:	1μ-sec
Option D:	8μ-sec
Q19.	Which of the following is not a characteristic of wave function?
Option A:	Continuous
Option B:	Single-valued
Option C:	Differentiable
Option D:	Physically significant

Q20.	At temperature $=37^{\circ} \mathrm{C}$, the energy gained by electron is $=$ ev
Option A:	0.0267 eV
Option B:	2.67 eV
Option C:	0.267 eV
Option D:	26.7 eV
Q21.	Schottky defect is observed in crystals when
Option A:	some cations move from their lattice site to interstitial sites
Option B:	equal number of cations and anions are missing from the lattice
Option C:	some lattice sites are occupied by electrons
Option D:	some impurity is present in the lattice
Q22.	When the temperature of either n-type or p-type increases, determine the movement of the position of the Fermi energy level?
Option A:	Towards up of energy gap
Option B:	Towards down of energy gap
Option C:	Towards centre of energy gap
Option D:	Towards out of page
Q23.	An ultrasonic wave is used to detect the position of defect in a steel bar of thickness 50 cm . If the echo times are 40 and 90μ-sec. locate the position of the defect.
Option A:	22 cm above the top surface
Option B:	22 cm below the top surface
Option C:	None of these
Option D:	22 cm middle of the top surface
Q24.	The interplaner spacing of (110) plane is $2 \mathrm{~A}^{0}$ for a FCC crystal. Find the atomic radius.
Option A:	$1 \mathrm{~A}^{0}$
Option B:	$6 A^{0}$
Option C:	$5 \mathrm{~A}^{0}$
Option D:	$9 \mathrm{~A}^{0}$
Q25.	Which of the following materials can be used to make a light-emitting diode?
Option A:	Silicon
Option B:	Germanium
Option C:	Gallium arsenide
Option D:	Phosphorescent material

